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It is possible, in principle, to derive all of the ma- 
croscopic properties of matter from the laws that govern 
the behavior of its elementary constituents. These laws 
are embodied in quantum mechanics. Such calculations 
would enable us, for example, to make accurate pre- 
dictions of the properties of any material at  high tem- 
peratures and pressures, relying only on the validity of 
Schrodinger's wave equation and Coulomb's law. This 
would be extremely useful in studies of the behavior of 
matter under astrophysical conditions or of the hot, 
dense plasmas produced in laboratory fusion experi- 
ments. Likewise, we might be able to predict more 
accurately the properties of liquids, such as water, under 
normal conditions. 

Continual advances in the computational power af- 
forded by each new generation of computers now make 
it possible for scientists to work toward the theoretical 
ideal of first principle calcualtions with some hope of 
success. The mathematical equations required to de- 
scribe very large systems of mutually interacting par- 
ticles (e.g., electrons and nuclei) are extremely difficult 
to solve. As a result, until recently, when attempting 
to predict the bulk properties of matter, we have been 
compelled to simplify the problem to one in classical 
physics, combined with empirically determined inter- 
action forces. 

The computer simulation of classical liquids has been 
very successful, given the interaction forces between 
their constituent molecules. Thus, for all practical 
pusposes, equilibrium properties can be quantitatively 
predicted under any conditions, no matter how complex 
the mo1ecules.l The numerical approximation tech- 
nique that makes it possible to solve this difficult 
many-body problem in statistical mechanics is the 
Monte Carlo method. Unfortunately, the single input 
that is esential to such calculations, namely, the mutual 
interaction potential among the molecules, is inade- 
quately known and, thus, currently represents the lim- 
iting factor in our attempts to make accurate quanti- 
tative predictions. 

The limitations of conventional theoretical methods 
make it necessary to deduce the interaction potential 
from experiment, and this procedure has large associ- 
ated errors. Therefore, it is desirable to develop an 
accurate technique for calculating, from first principles, 
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the interaction potential (that is, the forces acting be- 
tween the constituent nuclei and electrons of one 
molecule or atom and those of another). Calculation 
of this interaction potential is also a many-body prob- 
lem. In contrast to simulating classical systems, how- 
ever, we must now take into account the quantum 
mechanical nature of the electrons. A similar but even 
more ambitious project is to avoid introducing the in- 
teraction potential completely and to calculate directly 
the properties of the entire collection of electrons and 
nuclei that comprise the molecules of the system. We 
address here the question of whether the Monte Carlo 
method can also solve this and other problems in 
quantum many-body statistical mechanics. 

Classical Monte Carlo Simulation 
Why is the Monte Carlo method the numerical pro- 

cedure of choice for many-body problems? The de- 
scription of a system consisting of n particles can always 
be expressed in coordinates of a single point moving in 
a space of 3n dimensions. Numerical schemes that use 
even a coarse grid to span such spaces uniformly when 
n is very large (on the order of 100) are completely 
impractical, inasmuch as computational time increases 
exponentially with the number of dimensions. The key 
to the success of the Monte Carlo approach is that it 
enables a many-dimensional space to be selectively 
sampled. Instead of assuming a uniform distribution, 
we use a probability density called an importance 
function that samples the space where it matters most. 

Because it embodies a simple and highly repetitive 
algorithm, the Monte Carlo method is also well adapted 
to the fast arithmetic capabilities of computers. In fact, 
we would not even dream of using the Monte Carlo 
method without modern, high-speed computers. 

In classical statistical mechanics, we must evaluate 
an integral whose dimensionality is 3n, where n is 
typically in the hundreds. The integrand, which rep- 
resents a probability density that weights the impor- 
tance of various regions of the configurations space, is 
the well-known Boltzmann factor, exp -( V/kT), where 
V is the interaction potential, k is the Boltzmann con- 
stant, and Tis  the temperature. With the Monte Carlo 
scheme, we must juggle particles in such a way that all 
their accessible configurations are sampled with the 
probability given by the Boltzmann factor. The juggling 
consists of randomly moving one particle at  a time and 
accepting or rejecting the move according to the ac- 
companying change in the Boltzmann factor. 

A series of such moves generates configurations ac- 
cording t~ the weight of the integrand; thus, any average 
over the configurations is carried out by giving equal 
weight to each configuration so generated.2 In this way, 
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each computation is of equal importance, so to speak, 
and none is wasted in an improbable region of space. 
Since each move entails about 100 operations, about lo9 
moves per hour can be carried out on a fast processor, 
or about lo7 moves for each particle in a typical system 
of 100 particles. Because the statistical error in a Monte 
Carlo calculation decreases as the square root of the 
number of iterations, an accuracy of one part of lo4 is 
achievable in a run of 10 h. This is sufficient for most 
situations of physical interest. 
Quantum Monte Carlo Simulations 

For quantum mechanical systems, the calculation is 
quite similar. There are, however, several additional 
difficulties. For one, the probability density (the square 
of the wavefunction) is not known; instead, we must 
solve for it. This entails, first, making a best guess 
about the probability density, which serves as the im- 
portance f ~ n c t i o n . ~  This guess incorporates as much 
as we know about the actual wave function. The choice 
of the importance function is crucial to the success of 
the calculation because the function must be sampled 
on every move. This means that there is a high pre- 
mium on conciseness consistent with accuracy. 

After each random Monte Carlo move, we use what 
is known as a branching process to correct the "guessed" 
wave function. The branching process eigher destroys 
the entire configuration if the guessed probability was 
too large or replicates the entire configuration if the 
probability was too small. When the branching process 
reaches a steady state, we have obtained the correct 
energy and ground-state wave function. 

Another complication is that many quantum Monte 
Carlo applications require enormous precision, much 
higher than one part in lo4. This can be achieved only 
by the use of highly accurate importance functions, 
because, crudely speaking, the best Monte Carlo accu- 
racy of one part in lo4 is relative to the accuracy of the 
importance function. In special cases, where elaborate 
previous calculations have produced precise wave- 
functions that can be used as the importance functions, 
we can reduce the statistical error to one part in lo6 or 
lo7. In general, functions of such accuracy are not 
available; however, they can be generated, in principle, 
by an adaptive Monte Carlo scheme. In such a scheme, 
we first use the branching process to improve an ini- 
tially crude importance function and then use the re- 
sulting wave function as a new starting importance 
function. This self-learning process can be repeated to 
achieve any desired degree of accuracy. However, the 
practical problem of how to represent the many-di- 
mensional wave function in a concise form is a formi- 
dable one. 

The most serious complication in quantum simula- 
tions is that the wave function for fermions is not 
positive everywhere. This is a consequence of the Pauli 
principle, which requires antisymmetry with respect to 
the exchange of electron coordinates. This introduces 
populations that are associated with regions of opposite 
sign, which must be tracked ~eparately.~ So long as the 
two populations are not allowed to intermingle, the 
numerical scheme is stable but the solution is approx- 
imate. Any mingling process, however, is unstable, 

(3) M. H. Kalos, D. Levesque, and L. Verlet, Phys. Reu. A ,  9, 2179 
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(1974). 

because the stable solution then becomes the one that 
is symmetric, that is, of only one sign. The occurrence 
of this phenomenon is signaled during the mingling 
process, when both the positive and negative popula- 
tions grow exponentially in the branching process as- 
sociated with the symmetric solution. Hence, as the 
calculation progresses, it is increasingly difficult to ex- 
tract the desired solution, which is represented by the 
difference between the two rapidly growing populations. 
Nevertheless, in practice, it is possible to obtain this 
difference quite accurately before the result is over- 
whelmed by the statistical noise resulting from the 
differencing of two large numbers. 

Applications of Quantum Monte Carlo 
Calculations 

Before we discuss applications of quantum Monte 
Carlo calculations, it should be emphasized that the 
longer such calculations are run, the smaller the error 
bars within which the exact answer is known. Our en- 
tire calculational and programming effort, consequently, 
is directed toward making the computer run as efficient 
as possible so that we can obtain the most accurate 
answer in the shortest possible time. 

Interaction Potential 
We mentioned above that a knowledge of the inter- 

action potential among molecules, that is, the inter- 
molecular potential, is essential to classical Monte Carlo 
calculations of their bulk properties. However, data 
from even the simplest systems, such as spherically 
symmetric rare-gas atoms, have associated experimental 
errors so large that we cannot derive the intermolecular 
potential with sufficient precision to predict, for exam- 
ple, the crystal structure of the solid phase. Likewise, 
the dearth of experimental data on the simplest 
dumbbell-shaped molecules, such as two hydrogen 
molecules, makes it impossible to determine accurately 
their low-density interaction at all relative angles and 
separations. 

Given such difficulties, the real challenge is to use 
Monte Carlo methods to calculate the properties of a 
collection of simple molecules without using an exper- 
imentally derived intermolecular potential. This means 
that we must calculate the properties of the molecules 
directly from the Schrodinger equation that describes 
the motion of their electrons and nuclei. There is no 
uncertainty about this equation or about the relevant 
Coulomb interaction potential; furthermore, that po- 
tential has the enormous advantage of spherical sym- 
metry. The price of this simplification is that we must 
now solve a much more difficult quantum mechanical 
problem with a precision that is very high compared 
with that of a typical classical problem. The solution 
does not, however, depend on an intermolecular po- 
tential that is complicated and uncertain. 

It should be noted that we need not eliminate the 
intermolecular potential in every case. For light mol- 
ecules at high pressures, as in liquid and solid hydrogen, 
the zero-point motion of nuclei (motions due to their 
quantum mechanical nature even at 0 K) should be 
included anyway, so that a quantum mechanical cal- 
culation ab initio makes sense. At  normal atmospheric 
pressure, in contrast, attractive and repulsive Coulomb 
forces are in delicate balance. Under such conditions, 
the precision required in a quantum mechanical calcu- 
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lation prevents us from accurately predicting bulk 
properties, and we had best introduce an intermolecular 
potential. 

Eliminating the intermolecular potential also enables 
us to drop another common simplifying assumption, 
namely, that the total intermolecular potential is ad- 
ditive pairwise. The sum of pairwise potentials in a 
system usually does not represent its total potential 
accurately. Therefore, even a very accurate pair po- 
tential obtained a t  low density for a rare gas, such as 
argon, fails to quantitatively predict the properties of 
the normal liquid by some 20%. Because the effect of 
neighboring molecules on a pair of molecules is also a 
many-body problem, very little is known about higher 
order corrections to the pairwise additive potential. In 
metah, where the electrons are not localized to an atom, 
the painvise additive potential between ions is even less 
accurate. Although a pairwise pseudopotential treat- 
ment of metals predicts some properties reasonably 
well, the concept of a pair potential remains of marginal 
utility since it is temperature and density dependent. 
In such a case, a treatment that directly includes the 
electrons is strongly preferred. 

The excess properties of a mixture of two different 
liquids, even non-metals, are completely dominated by 
the nonadditive effects of the intermolecular potential. 
This is so because to calculate the excess properties, 
which are determined by the energy difference between 
the mixture and the pure components, we must know 
the value of the potential for the mixture much more 
precisely (by 1-2 orders of magnitude) than for the 
unmixed components. Thus, we cannot make quanti- 
tative predictions of the excess properties of mixing, 
even of two rare-gas fluids, until we know with much 
greater accuracy their mutual interaction potential at  
liquid densities. 
Interaction Energy of Helium 

The simplest system that illustrates the problem of 
calculating interaction energies consists of two helium 
atoms. When the two nuclei are separated by a distance 
that corresponds to their maximum attractive energy 
(their minimum interaction potential), the attractive 
energy is roughly eV (Figure 1). We would like 
to know that energy to an accuracy of 1 % , or to about 

eV. Such an accuracy exceeds the present uncer- 
tainty in the measured energy, which is roughly 5 X 
eV. With that accuracy, it would be possible to resolve 
the still-open question of whether two helium atoms are 
very weakly bound; that is, whether the first vibrational 
level of the diatomic system is inside the attractive 
potential well. 

Since the total binding energy of two helium atoms 
(the energy required to dissociate the four electrons 
from their nuclei) is about 100 eV, such a calculation 
must be accurate to one part in 10'. Because the two 
helium atoms interact very weakly, we can generate a 
very accurate trial wave function (known from previous 
variational calculations for two isolated helium atoms) 
by adding an approximate interaction energy obtained 
from perturbation theory. The trial wave function thus 
derived gives the depth of the potential well to an ac- 
curacy of lo%, or eV. To attain the 1 % accuracy 
we seek, we have two choices: either to improve the trial 
wave function by a more accurate representation of the 
interaction energy or to run the problem 100 times 
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Figure 1. Potential between two helium atoms as a function of 
their separation distance. The solid curve and the black circles 
are obtained from experiments; the squares and the indicated 
value with error bar at  the minimum are the result of Monte Carlo 
simulations. 

longer (which can be done by vectorizing the problem 
and running it on a supercomputer). 

A different approach to the problem avoids calcu- 
lating the absolute energies very precisely. To do this, 
we calculate directly the energy difference between the 
two helium atoms at  very large separations and a t  the 
distance where the potential energy is a minimum. In 
such a difference calculation, we run the two Monte 
Carlo simulations simultaneously, starting with the 
same random number, and keep track only of the dif- 
ferences. We have done this kind of calculation, with 
very accurate results, for the binding energy of the 
hydrogen molecule. The same scheme can be used to 
calculate the vibrational force constant at  the equilib- 
rium separation by applying the difference scheme for 
two separations near the energy minimum. The ex- 
tension of such calculations to systems with more than 
two electrons remains to be perfected. 

For two helium atoms at  distances smaller than the 
energy minimum, where repulsive forces dominate, the 
accuracy requirements are not nearly so demanding, 
and the theoretical accuracy easily exceeds the present 
experimental uncertainties. In the region where the 
repulsive energy is about 0.4 eV, the calculational ac- 
curacy of eV compares favorably with the experi- 
mental uncertainty of 0.5 eV. Accordingly, with some 
more work, we could calculate the interaction energy 
for helium to about 1 %. In the meantime (as discussed 
below), we have used an empirical potential to predict 
the properties of liquid helium. 
Molecular Clusters 

In addition to two helium atoms, which are weakly 
bound and chemically saturated, we have calculated the 
interaction energy for a typical ionic bond (LiH), a 
metallic bond (LQ, and a covalent bond (H20). Be- 
cause such bonds are considerably stronger than those 
of helium, our calculations do not have to be carried out 
as far. Thus, all of our quantum Monte Carlo calcula- 
tions of more strongly bound systems are more precise 
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than previous variational  attempt^,^ and accuracy can 
be improved further, by about an order of magnitude, 
by running a vectorized version of the calculation on 
a large computer. 

Our initial calculations for Liz as a prototype of the 
behavior of small clusters of lithium atoms (Li,) have 
encouraged us to pursue this approach. The idea is to 
study surface behavior in small droplets of lithium at- 
oms. By bringing a foreign molecule to the surface, we 
can determine how the molecule of interest is altered 
by the ensuing interaction, particularly with respect to 
its chemical reactivity. Such studies may provide new 
insight into catalytic activity. However, the estimated 
numerical resolution of eV/atom may not be suf- 
ficient to answer such delicate energetic questions. 
Furthermore, in a realistic calculation, the lithium 
nuclei must not be held fixed but must be allowed to 
sample all accessible configurations. We have done this 
for hydrogen (as described below); however, the vast 
difference between the mass of the nuclei and of the 
electrons produces formidable numerical problems. 
Nevertheless, no more attractive alternative is currently 
available. 

Our calculations for the water molecule hold even less 
promise for predicting the properties of bulk water, 
starting with a collection of oxygen and hydrogen nuclei 
and their associated electrons. Yet, such a program 
must eventually succeed if we are ever to make accurate 
predictions from first principles. The present classical 
calculations with a crude, pairwise additive potential 
do remarkably well but not are quantitative for all 
properties. Quantitative predictions must take into 
account the quantum mechanical nature of the hydro- 
gen bond, dispense with pairwise additivity, include 
polarization effects, and so on. In other words, the 
calculation must start with the elementary particles that 
make up water. Such a calculation for even a single 
water molecule, however, is not precise enough to enable 
an accurate treatment of a collection of water molecules. 
To do so, we must develop trial wave functions that are 
both more concise and more accurate. 
Electron Gas 

Although no one has yet predicted the properties of 
water starting with its elementary particles, it has been 
done for hydrogen. Before we addressed that problem, 
however, we studied the simplest condensed-matter 
system, the electron gas. Used extensively in predicting 
the properties of metals, an electron gas consists of a 
fluid of electrons moving against a uniform positive 
background. A long-standing problem associated with 
the electron gas is the contribution of many-body effects 
to the energy of the system. We have obtained values 
of the energy as a function of density that have now 
become standard input to approximate theories of 
metals (r,  values between 1 and 2); see Figure 2. 

Another question associated with the electron gas is 
the density at which it undergoes a solid-fluid (melting) 
phase transition, the Wigner transition (first suggested 
by Eugene Wigner). As a result of the small energy 
difference between the phases, various predictions of 
this density differ by many orders of magnitude. An 
interesting aspect of this transition is that the solid 

(5) D. M. Ceperley and B. J. Alder, J. Chem. Phys., 81, 5833 (1984); 
P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. 
Phys., 77, 5593 (1982). 
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Figure 2. Energy of the electron gas a t  a temperature of 0 K 
as a function of its density, p, expressed in terms of the radius 
of the electron sphere, rs (3/47rp)lI3, in Bohr radii. The energy 
E is given relative to that of the boson system, E,, multiplied by 
F: for convenience. Curves for the liquid phase are shown for 
three values of spin polarization (0,50, and 100%). At low r, (high 
density), the phase of lowest energy has an equal number of 
spin-up and spin-down electrons (0% polarization). This is to 
be expected, since kinetic energy dominates at  high densities and 
such an arrangement has the lowest Fermi energy. At larger values 
of F,, the decrease in potential energy caused by partial polarization 
more than compensates for the increase in kinetic energy; note 
that the fully (100%) polarized system never enters the stable 
phase. Finally, a t  low density (r ,  2 loo), where the potential 
energy dominates, the stable phase is a cubic crystal. 

phase is stable at low density. This is because the 
long-range nature of the Coulomb potential enables the 
potential energy to dominate the kinetic energy at low 
density. We have identified this density within a few 
percent and have found it to be so low that the phe- 
nomenon does not occur in ordinary metals. Re- 
searchers have observed the classical Wigner transition 
in experiments in which electrons are deposited as a 
film over a liquid-helium surface. So far, however, the 
electron densities achieved have not been high enough 
to produce a detectable quantum mechanical melting 
transition. 

Interestingly, an electron fluid near its solidification 
density is partly ferromagnetic; that is, some of the 
electron spins are not paired up as they are a t  higher 
densities. This phenomenon was predicted long ago by 
Bloch, but on the basis of a crude theory, and was 
therefore viewed with scepticism. Again, there is no 
obvious, direct experimental implication except that for 
another Fermi liquid, helium-3, a similar effect effect 
accounts for its large magnetic susceptibility. Although 
the ferromagnetic state in liquid helium-3 is not its 
ground state, its energy is very close to that of the 
diamagnetic state. The two states are, in fact, so close 
together that many approximate calculations wrongly 
predict that the ferromagnetic state is slightly more 
stable. 

We are continuing studies of other interesting prop- 
erties of the electron gas. One study is of its surface 
properties, in particular, the rapidity with which the 
electron density perpendicular to the surface drops from 
its bulk value to zero. In another investigation, still in 
its initial stages, we are trying to determine the di- 
electric properties of the electron gas by calculating its 
response to an external electric field. Similarly, we plan 
to investigate the response of the electron gas to an 
inserted test charge. All of these studies are preliminary 
to an investigation of the effects of polarization in liquid 
media-a phenomenon of great importance in biology, 
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Figure 3. Energy of molecular hydrogen, in rydbergs per atom, 
as a function of molar volume or pressure a t  a temperature of 0 
K. The circles are the result of Monte Carlo calculations, the solid 
curve was derived from experiment, and the dashed curve is its 
extrapolation. 

for example, where we need accurate knowledge of the 
energy required either to rearrange a hydrogen ion on 
a protein in a water solution or to rearrange salt ions 
in the neighborhood of such a protein. 

Hydrogen 
In studying hydrogen, we replaced the uniform pos- 

itive background of the electron gas by protons. Our 
calculation shows that at pressures below a few hundred 
gigapascals, the molecular phase of hydrogen is stable 
at  0 K (Figure 3). At these pressures, hydrogen is a 
crystalline molecular solid. Up to about 100 GPa, the 
highest static pressure so far experimentally accessible, 
our results agree perfectly with experiments (as they 
must because no significant approximations were 
made). Contrary to approximate calculations by others, 
we found that at high pressures, the hydrogen molecules 
still rotate in the crystal. At still higher pressures, 
around 300 GPa, a transition occurs to a stable metallic 
crystal of monatomic hydrogen (Figure 4). The exact 
location of this transition awaits further determination 
of whether an intermediate crystal structure between 
the molecular and metallic phases, such as a metallic 
molecular phase, might be stable. Such calculations are 
currently quite tedious because each possible structure 
must be investigated separately to determine which is 
the most stable. 

At the tremendous pressures encountered in the in- 
teriors of some stars, theory predicts that the metallic 
hydrogen crystal melts at 0 K. We have found that at  
7 X lo4 times the normal density of liquid hydrogen and 
1014 times normal atmospheric pressure, the zero-point 
kinetic energy of the protons exceeds the potential en- 
ergy that confines them to lattice sites, leading to 
melting. 

Similar calculations can be carried out to identify the 
pressure at which helium turns metallic. Of particularly 
great interest is the phase diagram of mixtures of hy- 
drogen and helium, since these elements are thought 
to constitute the interiors of Jupiter and Saturn. 
Cosmic abundance ratios give a mixture of about 10% 
helium in hydrogen. The phase diagram of this mixture 
up to about 4 TPa (the pressure at  the center of Ju- 
piter) may be particularly rich, since helium is not ex- 
pected to turn metallic until the pressure reaches about 
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Figure 4. Phase diagram of hydrogen. The predictions at a 
temperature of 0 K are based on quantum Monte Carlo calcu- 
lations. Phase behavior in the low-pressure region is derived from 
experiment. The transition indicated at high pressure and nonzero 
temperature (dashed curves) are conjectural. In the shaded region, 
the molecular phase is stable. 

10 TPa. Hence, the question is whether insulating 
helium is soluble in hydrogen under conditions where 
hydrogen is metallic. Quantum Monte Carlo calcula- 
tions should be able to resolve this question. 

Such calculations also might resolve a related but 
more difficult problem: whether highly ionized iron, 
whose cosmic abundance is very low, is insoluble in 
hydrogen under conditions at the center of the sun. Our 
previous theoretical predictions are approximate, and 
more precise calculations are needed.6 Should iron 
prove to precipitate out, it could account for the lower 
than predicted flux of neutrinos from the sun. Because 
iron makes a major contribution to the sun’s opacity, 
its precipitation would lower the calculated temperature 
at the center of the sun by reducing its opacity. A lower 
temperature would, in turn, reduce the probability of 
the nuclear reactions that are responsible for the 
high-energy neutrinos that are not observed. 

To deal with such calculations realistically, we must 
extend quantum Monte Carlo calculations for fermions 
to temperatures above 0 K. We are in the process of 
developing a numerical scheme that will treat a hy- 
drogen plasma at any desired temperature and density. 

The study of metallic hydrogen can illuminate other 
interesting theoretical questions; for example, how does 
the metal-insulator transition take place. This discon- 
tinuous process, known as the Mott transition, occurs 
at  a critical lattice spacing in metals. The relative 
simplicity of metallic hydrogen makes it an ideal system 
for studying this phenomenon. To model it, we must 
uniformly separate the atoms in the monatomic metallic 
lattice and then calculate the density at  which the 
electrons become localized, as they must at sufficiently 
large separations when the system consists of isolated 
hydrogen atoms. 

Such quantum Monte Carlo calculations might also 
be able to settle a controversial issue connected with 
the two-dimensional version of this system, namely, 
whether a two-dimensional, liquid metal film at low 
temperature ever exhibits metallic conductivity. A 
Monte Carlo simulation could study the conductivity 
of a two-dimensional system consisting of electrons and 
a disordered lattice of protons. 

(6) B. J. Alder, E. L. Pollock, and J. P. Hansen, h o c .  Nutl. Acad. Sci. 
U.S.A., 77, 6272 (1980). 
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Figure 5. Radial distribution function, g ( r ) ,  for helium-4 a t  a 
temperature of 2.08 K and a pressure of 1 MPa (very near the 
X point), as calculated from an empirical pairwise interaction 
potential and as derived from X-ray and neutron diffraction 
experiments. The agreement between theory and experiments 
is within experimental error. The dotted curve shows the effect 
of ignoring Bose statistics (that is, the particles are treated as 
distinguishable). The difference between bosons and distin- 
guishable particles can be ignored at 0 K and at high temperatures 
but have an appreciable effect at  temperatures near the X point. 

Helium 
Liquid helium-4 is a particularly fascinating quantum 

liquid. Below a certain transition temperature, called 
the X point (after the shape of the heat-capacity curve, 
which resembles the Greek lambda, A), it becomes a 
superfluid, with zero resistance to motion. Quantum 
Monte Carlo methods can directly predict equilibrium 
properties but not dynamical properties. It is possible, 
however, to calculate the quantities that characterize 
slow motions in the liquids. This information may 
enable us to establish the different mechanisms of stress 
relaxation that produce the vastly different viscosities 
in the two fluid phases. 

The equilibrium properties of superfluid helium do 
not differ so spectacularly from those of the ordinary 
fluid helium. The equilibrium properties also are rel- 
atively easy to calculate at 0 K, since helium-4 is a boson 
system and thus the wave function of its ground state 
has only one sign.7 The ground-state energy and the 
corresponding radial distribution function, calculated 
with an empirical pairwise interaction potential, com- 
pare well with the results of X-ray and neutron dif- 
fraction experiments (Figure 5) .  

A new algorithm8 now makes it possible to calculate 
the equilibrium properties of helium-4 at temperatures 

(7) P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, 

(8) E. L. Pollock and D. M. Ceperley, Phys. Reu. B: Condens. Mutter, 
Phys. Reu. B: Condens. Mutter, 19, 5598 (1979). 

30, 2555 (1984). 

above 0 K. These simulations indicate a phase tran- 
sition at the same temperature where the X spike in the 
heat capacity is observed experimentally. The simu- 
lations also show that below this temperature, the 
fraction of atoms having zero momentum (the conden- 
sate) grows rapidly. It is these atoms that give rise to 
the bizarre superfluid properties of liquid helium. 

Experimentally accessible boson systems are quite 
rare, and we wish to observe boson condensation in at 
least one other system. Accordingly, we have begun 
simulations to find the equivalent X transition for an- 
other and unusual boson system, polarized (spin- 
aligned) atomic hydrogen. Because hydrogen is more 
weakly interacting than helium, this system behaves 
more like a perfect gas than does helium and hence is 
interesting from a theoretical standpoint. Likewise, the 
relatively straightforward calculations involved will help 
experimentalists locate the superfluid transition at  
various pressures and temperatures. 

The study of helium-3, which obeys Fermi-Dirac 
statistics, is not nearly so advanced. Helium-3 has two 
superfluid phases in zero magnetic field. Because it 
becomes a superfluid at  much lower temperatures than 
helium-4 (between and K),  it represents a 
substantially more delicate problem in view of the 
correspondingly smaller energy differences between the 
phases. We cannot treat such a problem with quantum 
Monte Carlo methods straightforwardly until their 
numerical resolution is vastly improved. 

The study of solid helium-3, however, may throw 
some light on the mechanisms of melting. Classical 
simulations of premelting motion in hard-disk and 
hard-sphere solids have led to proposals for such 
mechanisms. Similar quantum Monte Carlo calcual- 
tions are underway. Since the helium-3 nucleus has a 
net spin, nuclear magnetic resonance can be used to 
provide information on the dynamics of spin exchange. 
Such experiments also have led to proposals regarding 
the motions in helium-3 just before it melts, making it 
possible to compare the proposed melting mechanisms 
with the results of the quantum simulation. 

Conclusions 
Quantum Monte Carlo calculations are proving to be 

a promising technique for investigating the properties 
of a collection of electrons and atomic nuclei under 
various conditions. As algorithms improve and com- 
puters become faster, we will be able to study, in finer 
detail, the bulk properties of increasingly complex 
systems. 

T h i s  article was originally prepared fo r  Energy and Tech-  
nology Review (Rept.  UCRL-52000-6-85), J u n e  1985, a monthly  
publication of t he  Lawrence Livermore National  Laboratory, 
Livermore, C A ,  where i t  appeared in  essentially the  same form. 


